A WALK INZ
THE DATA
DIVESTMEN [
CHALLENGE %

Data Ownership Across Time: Simple? No?

1 Here’s the knotty bit, put plainly.

A rules-based extract from a shared store isn’t just “today’s
permissions.” Across the timeline, who’s entitled to see what can
change—sometimes twice before lunch. Classic case: an employee
kicks off a transaction while at Company A, then moves to
Company B before the thing settles. For audit and carve-out
purposes, that record may still belong to A (because that’s where it
was initiated), even if B now employs the person who pressed “go.”
Role-based access helps, but you need time-sliced entitlements and
data structures—not verbal gymnastics.

Payment i

\

Data Entitlement follows the Sale

b o

A

Skills travel = Entitlements don’t

Sale @ 2 How to model it (without hand-waving)?

Effective-dated links: employee <+ company; transaction < legal entity;
processor «+ controller.

Event stamps: initiation_at, completion_at, plus as_at on any enquiry.

Bitemporal rules: answer questions “who owned/was entitled as-was at T0?”
and “who is entitled as-is today?”” without rewriting history.

Default-deny unless all four line up: role, purpose, time window, and policy
clause (e.g., divestment perimeter).

Trainspotter’s notes This is exactly the sort of thinking AI/ML has to cope with—or, for the maths aficionados, why a humble calculator earns its keep once your linear equations wander

past three variables. (Full disclosure: two variables was plenty spicy for me.)

Data Ownership Across Time: Systematic <> Easy to Define

3 Example: An employee Janey Job-Hopper works for a large corporate
group comprised of Company A makes yellow widgets, Company B
makes Blue Widgets, Company C makes Green widgets. Janey is an
absolutely skilled widget sales person. When she makes a sale thereis a
sales transaction recorded followed by a payment transaction one month
(28 days later). Janey is in so much demand that she frequently transfers
between company's in the group. Big boss lady decided to split company
B into a separate legal entity. Company B is entitled to the sales data
made by Janey when she was employed by Company B. Company B is
also entitled to the payment data for sales that Janey made when she
was an employee in Company B. Express this in a diagram showing
Janey's employee status changing and the transactions that relate to
Janey's sales activity.

Janey's sales activity scenario is what is known as a Bi
Temporal. Before you know it you will have achieved a

shared business and technology stakeholder understanding.

Techy diagrams to follow -

Janey Job-Hopper — Employment vs Sales/Payments (Entitlement Rule)

Janey

Company A Company B Company C

S

Sales & Payments Ledger

Employer-of-record: Company B &

Record Sale 51

:TD: Janey employed by Company B :

e

Entitlement: B (Sale S1) &y

Now employed Ey Company A\

:TCI + 28 days (Payment for 51) :

< Record Payment P1 (for Sale S51)

Entitlement: B (Payment follows Sale's company) By

Employer-of-record: Company A &

Record Sale 52
—_—

:Tl: Janey employed by Company A |

Entitlement: A (Sale 52) ™

Now employed by Company C &y

:Tl + 28 days (Payment for 52) :

< Record Payment P2 (for Sale 52)

Entitlement: A {(Payment follows Sale's company) &

{12: !
{ T2: Janey employed by Company C

Employer-of-record: Company C &

Record Sale 53

-

Entitlement: C (Sale 53) >

jalr)_e\y Company A Company B Company C

:TZ + 28 days (Payment for 53) :

< Record Payment P3 (for Sale 53)
Entitlement: C (Payment follows Sale's company) &

Sales & Pay_r_n_e_n[s Ledger

o

Selection Rule:

Payment data entitlement follows the Sale's
Company-of-Record at the time of the Sale,
regardless of Janey's employer at payment date.

Straight forward carve out algorithm

Carve out algorithm with two time-lines:
e.g., event occurs —>transfer data = event posted)

Effective-Dated "As-Of" Join — Carve-out Filter (Plain-English Flow)

Ingest Business Activities

(eqg., time, invoices, payroll\nwith Activity Date and Person

Ingest HR Events
(Hire, Transfer, Terminate)\nfor each Person

Build Work Stints
(Who worked where & when)\nfrom HR Events
- [start_date, end_date, company_code]

v

Any overlaps or gaps? Na

Jers

Clean periods:
- closefopen on transfers
- resolve same-day rules
- fill gaps if needed

Y

As-0Of Join
Match each Activity to the\nPerson's Weork Stint that covers Activity Date

v

Yef Company on stint = 'A' ? %

Mark Activity = Included Mark Activity = Excluded

Publish Carve-out View Rule ofithumbx

{only Included activities) "On the activity date, was this person in Company A?"

If yes = keep. If no -+ drop.

Late HR change arrives? - No
(back-dated transfer)
Yes

Rebuild/Update Work Stints

v

Re-evaluate Activities
using the same As-Of Join

v

Produce change log:
which rows switched side and why

Y

-

®

Bi-Temporal Variant — Valid Time vs. Load Time

?

Facts (Activities)
= activity_date (business time)
* load ts (when we loaded it)

v

Master (Work Stints)
= valid_from / valid_to (business time)
= _from/ tx_to (when HR told us)

v

Pick policy

Use BOTH clocks:
+ Valid time: what was true on the activity date
* Transaction time: what we knew at the time

Use Bi-Temporal Audit/strict replay? Operational truth

Join WHERE Join WHERE

activity_date & [valid_from, valid_to) activity_date & [valid_from, valid_to)
AND fact.load_ts € [tx_from, tx_to)

e -
F

v

Yf Company = 'A' on matched slice? %

Include Exclude

- |
-

Y

v

Emit lineage + why:
which slice matched, policy used

BUSINESS REQ TO SEMI TECH MODEL

Non-Technical Concept Model — Company A Carve-out

| People |

| Companies |

person name ‘

employee/worker D | e |

did by has oCccurs in

Business Activities
(things that happened)

activity date
amount/hours

Include an activity in the handover if: : A .
1) Find the person’s Work Stint covering the activity date Work Stints
~ 2) That stint says Company = A credited to (who worked where & when)

Otherwise, exclude.

If Shares exist, apply the split. | start date |

may split to

Credit Shares
{optional)

REAL
WORLD
DIALEC

Carve-out l['I.|I’nfho-'ma':'.nrlu*at:l-whn'en'e-aln::l-u\a'hn\anll\|

Star Schema with Bridge Tables — Plain-English Narratives

Sales Credit Split (Sharing the pie}\

D_Employee
o employee key : INT «PK:»

employee_nk : STRING
full name : STRING
scd start_dt: DATE
scd_end dt : DATE

D_Date
o date_key : INT «PK»

D _Company
o company_key : INT «PKa»

company_code : STRING
company _name : STRING
is_divested : BOOLEAN

1..* stints 1..* stints

A
B_EmployeeCompanyPeriod

o period key : INT «PKx»

employee at line grain | full_date : DATE

year DINT
month :INT
day CINT

by transaction date

-
-
-

_,-f\ -
F_Transaction

o txn_key : BIGINT «PKx»

-
-
-

employee_key D INT «FK=
transaction_date _key : INT «FK=»

document nk : STRING
line_nk : STRING
amount : DECIMAL(18,2)

company_code src : STRING ' optional source stamp

employee_key : INT «FKx»

company key : INT «FK»

effective start date : DATE

effective_end_date : DATE ' NULL = still there

-
-

:)

- - il
include if txn_date € [start, end) ||
III

Narrative — in plain English

We're selling Company A. We can only pass across records
from the dates when people were actually in A.

People move—A to B to C—so we keep a tidy work-history:
who was in which company, from when, to when.

When we look at any transaction, we ask one simple question:
“0On that date, was this person in A?"

If yes, it's in the pack. If no, it stays home.

Clear, explainable, and no creative accounting.

D _Product
D_Date

o date_key : INT «PKx»
full date : DATE

o product_key : INT «PK=

sku : STRING
prod name : S5TRING
category : STRING

by invoice date

A
F_InvoiceLine

oinv_line_key : BIGINT «PKx»
product_key : INT «FK=»
invoice date key : INT «FK»

qty : DECIMAL(18,4)
net_amount : DECIMAL(18,2)

D _Salesperson

o sales key : INT «PKs=

sales nk : STRING
name : STRING
region : STRING

1..* credits 1..* splits

-2
B_SalesCreditSplit

CINT «PK=

inv_line_key : BIGINT «FKx»
sales key S INT «FK
credit_weight : DECIMAL(9,6)
role_code : STRING

o split_key

I L
Narrative — in plain English
One sale, two people: the scout who opened the door
and the closer who sealed it. Rather than counting
the full amount twice, we write down who was involved
and the agreed share—70/30, 60/40, whatever the deal was.
Totals add up, credit lands where it should, and
nobody argues with the calculator.

Bridge tables

* Who-worked-where-and-when: filters transactions to the right company by date.
* Sharing the pie: splits one sale across several people faily and visibly.

I I C I I Star Schema with Bridge Tables — Annotated
Carve-out (Time-Valld Membership Bridge)\ Sales Credit Split (Many-to-Many Bridge with WEights)\
. __|

D_Employee D_Company D_Product
o employee_key : INT «PK» o company_key : INT «PK» o product_key : INT «PK» D_Date
?ur“pr:’;ﬁ:—rfks}ﬂ—ﬁqu company_code : STRING sku : STRING o date_key : INT «<PK»
scd start db: DATE company_name : STRING prod_name : STRING full_date : DATE
- - is_divested : BOOLEAN category : STRING

scd end dt : DATE

1..* stints by invoice date
. A ' A
D _Date B_EmployeeCompanyPeriod D_Salesperson F InvoicelLine
o date_key : INT «PK: o period_key : INT «PKs= o sales_key : INT «PK» o inv_line_key : BIGINT «PK:
employee at line grain | full_date : DATE employee_key : INT «FKx» sales nI(STRING Prod_uct_key tINT «FK>

year D INT company_key : INT «FK= name : STRING invoice_date_key : INT «FKs»

month : INT effective_start date : DATE region '.STRING qty : DECIMAL(18,4)

day D INT _ effective_end_date :DATE 'NULL = open 9 ' net amount : DECIMAL(18,2)

- 1
by transaction date - “include if txn_date € [start, end) : 1..* credits . splits
-7 i
iy £ ! .
F_Transaction :_l;rrail::i"lve — Car;e-a?t Memhershlip Bridghe .
is table remembers, for every employee, which company B SalesCreditSplit

o txn_key : BIGINT «PK» they belonged to and exactly when. — a
employee key CINT «FKo» Derived from hireftransferfterminate events, it holds o split_key :INT «PK=»
transaction date key. CINT «FK» effective start/end dates so you can match a transaction's inv_line_key : BIGINT «FK»
d k- S.TRING date to the right membership. les ke 'IINT FK
jocument_n . . Filtering facts to Company A periods means: sales_key - . Bt
line_nk : STRING - Employees moving between A, B, C are handled correctly. credit_weight : DECIMAL(9,6)
amount : DECIMAL(18,2) - Only A-period transactions are included. role_code :STRING
company_code_src : STRING - Retroactive transfers are auto-corrected. I||

Narrative — Many-to-Many Bridge &

Some facts need to link to multiple dimension rows.
Example: An invoice line sold by two salespeople.
This bridge holds the link and the credit_weight,

so you can split measures (e.g., 70/30) without
duplicating fact rows.

The result:

- Accurate revenue by salesperson.

- Clean star schema with no multi-key hacks.

Bridge tables
* B_EmployeeCompanyPeriod: Resolves time-valid employee—=company membership for carve-outs.

« B_SalesCreditSplit: Resolves fact—»many salespeople with weighted allocation.

C O M I\/I O N PATTER N S (A BIT TECHIE, BUT THEY WORK)

Pattern Name

Effective-Dated Join

As-Of Join

Valid-Time Join

Point-in-Time Filter

Effective Dating with Retroactive
Adjustment

Bi-Temporal Filtering

Where it’s used

HR /payroll systems, dimensional
modelling

SQL/DW, slowly changing dimensions

Temporal databases, bi-temporal
modelling

Auditing, data lakehouse design

ETL/ELT change-data-capture
pipelines

Financial & regulatory data

How it relates to your scenario

Join facts to master data based on a
date range so the fact is linked to the
version of the master data that was
valid at the time of the event.

Filter/join to the correct dimension
row “as of” the event date, regardless
of current state.

A join that respects the valid_from /
valid_to of both fact and master data.

Retrieve only records whose master
data attributes were true at a specific
historical point.

Handles late-arriving changes that can
flip a master data record from “in” to
“out” for past events.

Applies both valid time (business truth)
and transaction time (when the record
was loaded/changed) to ensure correct
historical state.

	Default Section
	Slide 1: A walk in the data divestment challenge
	Slide 2
	Slide 3

	Moving Toward Technical Diagrams
	Slide 4
	Slide 5: business req to semi tech model
	Slide 6: Real world dialect

	Moving towrads technical modelling
	Slide 7: Techie dialect

	Annex for common patterns
	Slide 8: Common Patterns (a bit techie, but they work)

