

Data Ownership Across Time: Simple? No?

1 Here's the knotty bit, put plainly.

A rules-based extract from a shared store isn't just "today's permissions." Across the timeline, who's entitled to see what can change—sometimes twice before lunch. Classic case: an employee kicks off a transaction while at Company A, then moves to Company B before the thing settles. For audit and carve-out purposes, that record may still *belong* to A (because that's where it was initiated), even if B now employs the person who pressed "go." Role-based access helps, but you need time-sliced entitlements and data structures—not verbal gymnastics.

Skills travel → Entitlements don't

Data Entitlement follows the Sale

2 How to model it (without hand-waving)?

- Effective-dated links: employee ↔ company; transaction ↔ legal entity; processor ↔ controller.
- Event stamps: initiation_at, completion_at, plus as_at on any enquiry.
- **Bitemporal rules**: answer questions "who owned/was entitled *as-was* at T0?" and "who is entitled *as-is* today?" without rewriting history.
- **Default-deny** unless all four line up: role, purpose, time window, and policy clause (e.g., divestment perimeter).

Data Ownership Across Time: Systematic ⇔Easy to Define

3 Example: An employee Janey Job-Hopper works for a large corporate group comprised of Company A makes yellow widgets, Company B makes Blue Widgets, Company C makes Green widgets. Janey is an absolutely skilled widget sales person. When she makes a sale there is a sales transaction recorded followed by a payment transaction one month (28 days later). Janey is in so much demand that she frequently transfers between company's in the group. Big boss lady decided to split company B into a separate legal entity. Company B is entitled to the sales data made by Janey when she was employed by Company B. Company B is also entitled to the payment data for sales that Janey made when she was an employee in Company B. Express this in a diagram showing Janey's employee status changing and the transactions that relate to Janey's sales activity.

Janey's sales activity scenario is what is known as a Bi Temporal. Before you know it you will have achieved a shared business and technology stakeholder understanding. Techy diagrams to follow →

Straight forward carve out algorithm

Carve out algorithm with two time-lines: e.g., event occurs →transfer data → event posted)

BUSINESS REQ TO SEMITECH MODEL

Non-Technical Concept Model — Company A Carve-out

Star Schema with Bridge Tables — Plain-English Narratives

REAL WORLD DIALECT

Bridge tables

- Who-worked-where-and-when: filters transactions to the right company by date.
- Sharing the pie: splits one sale across several people fairly and visibly.

Star Schema with Bridge Tables — Annotated

TECHIE DIALECT

Bridge tables

- B_EmployeeCompanyPeriod: Resolves time-valid employee→company membership for carve-outs.
- B SalesCreditSplit: Resolves fact→many salespeople with weighted allocation.

COMMON PATTERNS (A BIT TECHIE, BUT THEY WORK)

Pattern Name	Where it's used	How it relates to your scenario
Effective-Dated Join	HR/payroll systems, dimensional modelling	Join facts to master data based on a date range so the fact is linked to the version of the master data that was valid at the time of the event.
As-Of Join	SQL/DW, slowly changing dimensions	Filter/join to the correct dimension row "as of" the event date, regardless of current state.
Valid-Time Join	Temporal databases, bi-temporal modelling	A join that respects the valid_from / valid_to of both fact and master data.
Point-in-Time Filter	Auditing, data lakehouse design	Retrieve only records whose master data attributes were true at a specific historical point.
Effective Dating with Retroactive Adjustment	ETL/ELT change-data-capture pipelines	Handles late-arriving changes that can flip a master data record from "in" to "out" for past events.
Bi-Temporal Filtering	Financial & regulatory data	Applies both valid time (business truth) and transaction time (when the record was loaded/changed) to ensure correct historical state.